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Abstract

Until the turn of the century, research into a varied internal structure of elastic

rods had been sparse. Whilst models of Kirchhoff rods in an equilibrium state

have been frequently documented, transferring to a more precise, time-dependent

dynamical system introduces a higher degree of complexity. However, the combi-

nation of these two factors has rarely been studied and reported upon.

Modifying the profile of the flexural rigidity accounts for the shift in behaviours

of rods with non-uniform structure. By relating this to a perceived thickness,

this concept could be mathematically modelled, producing simulations of numer-

ous rods with varying physical shape. With the aim to categorise distinguished

solutions, I move to observe simulations representing real-world instances, giving

reasoning for the types of behaviour shown according to its specific purpose.
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Section 1

Introduction

1.1 Project Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Pre-existing Mathematical Research . . . . . . . . . . . . . . . . . . . . . 2

1.3 Establishing an Original Approach . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Project Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Applications of an elastic rod model span a wide variety of disciplines. From macroscopic

engineering to microscopic biology, I aim to expand on the initial research done by Kirchhoff

and Clebsch circa 1860 [1, 2], to create a generalised rod model that is accountable for

variations in diameter. The idea of this model was first proposed by Jacob Bernoulli in

1691, then solved by Leonhard Euler in 1744 (both cited in Matsutani, 2010) [3] to give a

new branch of mathematics, known as the elastica theory.

1.1 Project Motivation

In general, the elastica theory describes a slender-bodied rod with elastic properties having

one dimension vastly larger than any other. Bending, torsion and stretching can all be

modelled by the changing in curvature of a centerline. In reality, these types of rods occur

both in nature and man-made objects such as undersea cables; though more interestingly,

it is the function of naturally occurring rods that partially define their own structure.

Throughout the last few decades, more research into the area has become apparent. Inves-

tigation into the case where forces exist(1), however, often assume that the bending stiffness

of the system remains constant as a simplicity. In many real-world cases this is in fact

imprecise, where the inclusion of a varied bending stiffness can alter the solution of the

model by a relatively considerable degree. Also referred to as the flexural rigidity, and

used interchangeably, the bending stiffness is a material property measuring the resistance

to deformation under stress. I, therefore, move to investigate how the changing of both

(1) Known as the dynamical case.
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internal and external structures affect the behaviour of elastic rods, with an emphasis on

demonstrating the magnitude of deviation from cases making this constant assumption.

1.2 Pre-existing Mathematical Research

Kirchhoff initially aimed to convey his theory in terms of the variational theorem, whereas

Clebsch dissected the rod into segments, implying each segment was subject to a force (as

cited by Dill, 1992) [4]. Nearing the end of the nineteenth century, Augustus Love intended

to prove the equations of Kirchhoff-Clebsch in an entirely different manner, as portrayed

by Truesdell in Dill’s ‘Kirchhoff’s theory of rods’ [4]:

“He [Love] took the modern global point of view and assumed that the deformed state

differs by small deformations from a motion in which cross sections remain plane,

undistorted, and normal to the axis.”

— Truesdell, C. (1992)

A mathematical model of the elastica theory can be applied to various cases due to its

robustness; because of this, the theory has been developed and improved upon since its

construction in the early eighteenth century. Only the equilibrium case was initially con-

sidered, but the continued research from Kirchhoff and Clebsch published in 1859 and 1862

respectively, sparked a delayed interest into the dynamical, time-dependent case by the

twentieth century.

Perhaps triggered as a result of the surge of modern medicine, in the twentieth century, the

dynamical case became more prevalent and had biological applications in the modelling of

deoxyribonucleic acid (DNA), bacterium and flagella. In fact, Goyal, Perkins and Lee (2005)

investigated the quasi-static, dynamical case of modelling DNA and three-dimensional su-

percoils in their published work, titled: ‘Nonlinear dynamics and loop formation in Kirchhoff

rods with implications to the mechanics of DNA and cables’ [5].

The introduction of a variable bending stiffness is non-trivial, so is often used in conjunc-

tion with the equilibrium case for simplicity. Nevertheless, as an example, flagella should

not be accurately modelled using a constant bending stiffness; that is the whipping mo-

tion often seen in flagella occurs as a consequence to its non-uniform structure. Dias and

Audoly (2015) began to introduce the concept of a variable width within ribbons, citing

and extending Wunderlich’s and Sadowksky’s models in the case of equilibrium [6], where,

three years later, Silverman and Farrah (2018) [7] investigated the variation in geometry

of a tapered cantilever. However, there is no obvious published work investigating variable

2



structures within the dynamical case, particularly in the non-quasi-static instance.

1.3 Establishing an Original Approach

The overarching intention, therefore, is to expand on all pre-existing mathematical research

to manufacture a model, incorporating a dynamical Kirchhoff rod with variable structure.

The reason for this is to create a model that develops throughout time.

The way in which I plan to introduce this is through a linear relationship with the bending

stiffness, suggesting that this is proportional to some radial function defining thickness

across its profile, along with a non-uniform material density.

For situations with only small perturbations in geometry, the system may be solved precisely,

or even analytically using methods from the variational theorem. Yet, for most situations

in our specific case, this may not always be true. Therefore, I shall also employ several

numerical methods such as the fourth order Runge-Kutta (cited in Weiss, 2002) and Adams-

Bashforth methods, to obtain approximate, but accurate, solutions to our model [8]. Even

so, it is a known problem that certain solutions will inevitably become unstable as a result

of bifurcation conditions(2) (Goyal, Perkins and Lee, 2005) [5].

1.4 Project Scope

With a formulated model, I look ahead and anticipate certain families of solutions based

on the variation of width, with a purpose to categorise them based on observed behaviour.

The idea of this model is to simulate more accurate solutions of the rod, so I therefore also

aim to demonstrate the benefits of this model and justify my reasoning for making this

modification of the dynamical Kirchhoff system.

As with all branches of mathematics, the theory endeavours to describe, and in particular

here, material objects. Consider this, I look to apply the model to real-world examples

and compare the behaviours to already categorised solutions, giving insight into possible

explanations for the structure’s profile, based on functionality.

(2) Defined in the glossary, the bifurcation theory is the study of variations in solutions of dynamical
systems.
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Section 2

Model Formulation

2.1 Space Curve Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Mechanical Twisting and Curvature . . . . . . . . . . . . . . . . . . . . . 6

2.3 Internal and External Forces . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Stabilising the Forces . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Balancing Moments and Couples . . . . . . . . . . . . . . . . . . . 9

To describe the system I plan to work with, classical mechanics are used to introduce for-

mulae to begin to develop the system mathematically. The model will simply contain an

isolated object, namely the elastic rod, where the rod’s position can modelled, whilst expe-

riencing external forces, as a function of time. By also incorporating internal forces, the aim

is to model the variation in geometry of a rod subjected to these forces, in two-dimensional

space at a large quantity of generalised points over time. The following derivation is an

adaptation of the model by Prior (2020) [9].

2.1 Space Curve Geometry

Under such forces, one can investigate the change in profile of the rod’s geometry. By

making the safe assumption that the entire behaviour is governed by a central curve, the

alteration in geometry can be calculated explicitly.

By first mathematically describing the system as a smooth, unit speed space curve r(s, t) :

[0, L] × [0, t] → IR3 × IR, where for a parameterising arc length s ∈ [0, L], the central

curve r(s, t) maps to a point in three-dimensional space at a given time t. Dependent on

time, this centre-line r moves throughout the domain and will change geometry under some

experienced forces.

Having characterised a space curve, a basis for all s along the curve of length L assists in

modelling the effects experienced by the rod and can be defined by differential geometry in

the following way.
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Definition.

For r : I → IR3 a smooth unit speed space curve in some interval I, t(s) = r′(s) is its

tangent vector (3) and, moreover, the curvature of r is defined as,

κ(s) :=
∥∥t′(s)∥∥ =

∥∥r′′(s)∥∥ .
Then, for κ non-zero, n(s) = 1

κ(s) · t
′(s) exists and is the principal normal vector to

the curve r(s). To complete the basis, the vector orthogonal to both n(s) and t(s) is

b(s) := t(s)× n(s) ∈ IR3, which is the binomial vector of r. Combining these vectors,

the oriented orthonormal basis
[
t(s),n(s),b(s)

]
is called the moving frame basis(4).

The torsion of r at a point s is defined by,

b′(s) = τ(s)n(s).

Conjecture. (Frenet-Serret Formulae)

Given r(s) and its corresponding moving frame, then for κ 6= 0 the following relations

can be proved,

t′(s) = κ(s)n(s),

n′(s) = τ(s)b(s)− κ(s)t(s), (2.1)

b′(s) = τ(s)n(s).

Taking the basis, I relabel it to the orthonormal triad (d1,d2,d3), where d3 = t(s). Now

considering any twisting and bending of the rod, the curve is restricted to the plane spanned

by the vectors d1 and d2, which are linearly independent of each other. Therefore, any

twisting that occurs happens solely in the d3, tangent, direction. Figure (2.1) shows two

examples of rods, given a central curve r and a visual representation of the moving frame

basis used at every point s along its entire profile.

(3) This vector is inherently unit by the properties of unit speed curves.
(4) This frame is also known as the Frenet-Serret basis.
(5) Given any space curve r(s), the equation of the tubular surface at a radius r0 from the curve is

S(s, θ) := r(s) + r0
[
b(s) sin θ-n(s) cos θ

]
, as in Figures (2.1a) and (2.1b).
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(a) (b) (c)

Figure 2.1: (a), (b): Visual representation of two different curves r
in Euclidean space, with tubes around the curves, showing the thick-
ness of rods with small radii. (c) Visual representation of the Frenet-
Serret basis in three dimensions.(5)

2.2 Mechanical Twisting and Curvature

Under any force or moment, one would expect the rod’s profile to deform; this is represented

by moments of twisting and bending. In a geometrical sense, a tensor is required that acts

on the basis, causing it to move and rotate in three-dimensional space.

Let u1(s), u2(s) be functions illustrating the rate of bending in the directions d1 and d2

respectively, along with u3(s) the rate of twisting. Then a combined rotation tensor Ω is

defined as,

Ω := u1d1 + u2d2 + u3d3, (2.2)

such that,

d

ds

d1

d2

d3

 =

 0 u3 −u2
−u3 0 u1

u2 −u1 0


d1

d2

d3

 . (2.3)

Making the assumption that the curve can be restricted to a two-dimensional plane without

twisting, that is u3 = 0, it is possible to set either u2 or u1 to zero since the axis is planar.

Without any loss of generality, I then fix u1 = 0, to explicitly obtain the following:

d

ds
d1 = −u2d3 ,

d

ds
d2 = 0 ,

d

ds
d3 = u2d1, (2.4)
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d2

ds2
d1 = −du2

ds
d3 − u22d1, (2.5)

d2

ds2
d1 −

1

u2

du2
ds

d

ds
d1 + u2

2d1 = 0. (2.6)

In terms of d1, this is a second-order linear differential equation with constant coefficients;

hence, for u2 constant,

d1 = sin(u2s)d3(0) + cos(u2s)d1(0). (2.7)

By the first equation of (2.4),

d3 = − cos(u2s)d3(0) + sin(u2s)d1(0). (2.8)

However, with a planar rod(6), one can always write the basis vectors in terms of an angle

θ(s). That is,

d3 =
(
cos θ(s), sin θ(s), 0

)
, d1 =

(
− sin θ(s), cos θ(s), 0

)
, d2 = (0, 0, 1) . (2.9)

From my definitions, d3 was the unit tangential vector(7),

d3 = t(s) =
dr(s)

ds
, (2.10)

which can, in turn, be solved for r(s), as the anti-derivative of d3 with fixed initial position

r0,

r(s) = r0 +

∫ s

0

(
cos θ(s′), sin θ(s′), 0

)
ds′. (2.11)

2.3 Internal and External Forces

Having described the geometry of the system quantitatively, I look to a rod subjected to

forces and moments. The idea is to evaluate the forces that act on the rod, both internally

and externally. This is done via Newton’s third law, which states that if the rod is in

equilibrium then the sum of external forces is equal to the sum of internal forces.

(6) Setting d3(0) = (−1, 0, 0) and d1(0) = (0, 1, 0) as one example, I arrive at d3 as in equation (2.9).
(7) Since I have assumed that the curve is unit-speed and the tangent vector of unit length, this automat-

ically forces that the rod cannot be stretched.
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2.3.1 Stabilising the Forces

By taking a segment of the rod, the forces acting on it can be investigated. Let the

segment of the rod be defined by the range [s, L] with an arbitrary s; then at s, three

individual forces act on the rod. A force n(s) is exerted externally by the material of

the rod on the segment [0, s); another force N, independent of s, acts on the end point

of the rod. By Newton’s laws, the sum of these two forces is equal to the sum of internal

forces, which can be defined as a group of force densities f(s) acting on the interior of

the range [s, L). Quantitatively that is,

n(s) + N =

∫ L

s

f(s′) ds′, (2.12)

and by differentiation is equivalent to,

dn

ds
= −f(s). (2.13)

Here, I have denoted f(s) as the generalised internal forces acting on the rod, having

usually arisen physically from friction due to viscosity within a medium or even resistance

from induction into an electromagnetic field. Below, Figure (2.2) demonstrates the forces

and how they act on a generalised subsection of rod, this also includes moments and

couples, which I now look to evaluate.

Figure 2.2: Figure showing the forces, moments and couples acting
on a generalised subsection of rod.
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2.3.2 Balancing Moments and Couples

Should one once again consider the [s, L] segment of the rod, three explicit moments that

act on a specific point in space can be evaluated. Denoting this general point p with

arbitrary s as before, the moment experienced at s is [r(s)− p]× n(s). Similarly at the

end point of the rod (r(L)) a moment [r(L)−p]×N is applied. Since the internal force

f(s) acts at every point along the rod, I define the moment generated by f as the density

[r(s)− p]× f(s) per unit length.

Couples do not produce a net force, but produce a moment, as the forces applied do not

act at the same point. This is the reason that the rod may twist when forces are applied.

A couple m(s) acting around the point s is generated by the material of the rod acting

on the section [0, s), with M the couple acting on r(L). The final couple density l(s)

exerts on the subsection [s, L). Then, by the third law of Newton,

[r(s)− p]× n(s) + [r(L)− p]×N + m(s) + M =

∫ L

s

[r(s′)− p]× f(s) + l(s′) ds′.

By taking the total derivative of this equation with respect to s,

[r(s)− p]× dn

ds
+
dr

ds
× n +

dm

ds
= −[r(s)− p]× f(s)− l(s); (2.14)

as a result of force equilibrium (2.13),

dr

ds
× n +

dm

ds
= −l(s). (2.15)

Together with the definition of the tangential vector d3, the following system can describe

the balance of the rod in its entirety,

dn

ds
+ f = 0, (2.16)

dm

ds
+ d3 × n + l = 0.

Whilst these equations describe the rod in equilibrium, they cannot show how a rod may

develop throughout time. Often mathematicians assume that the system can be modelled

as quasi-static to introduce time dependence, but in general this is not the case. Quasi-

static processes happen at such a rate that the internal equilibrium of the system remains

constant. Yet, in many cases of rod theory, this should not be assumed, as the process

happens relatively fast. This is where I rely on the dynamic Kirchhoff rod equations to

further the model.

9



Section 3

Kirchhoff’s Elastic Rod Theory

3.1 Simplifying Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Solving the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Analytical ODE Solutions . . . . . . . . . . . . . . . . . . . . . . . 15

The equations (2.16) above are an example of a system that describes the behaviour of

a Kirchhoff elastic rod in equilibrium. However, in order to find solutions that progress

through time, a system that has explicit time dependence is necessary. Kirchhoff’s elastic

theory describes equations that demonstrate the dynamics of an inextensible rod with a

central curve r, written as an extension of the equilibrium case just derived.

For a Kirchhoff rod described by a moving frame basis(8), the following system arises due

to conservation of linear momentum (3.1) and angular momentum (3.2) of the rod, where ρ

is the material density and I1, I2 are the second moments of area(9) in the d1,d2 directions

respectively.

∂n

∂s
+ f = ρ

∂2r

∂t2
(3.1)

∂m

∂s
+ d3 × n + l = ρ

(
I1d1 ×

∂2d1

∂t2
+ I2d2 ×

∂2d2

∂t2

)
[10] (3.2)

3.1 Simplifying Assumptions

In its current state, the system cannot be solved. At present, there are a total of 15 functions

that need to be satisfied. As a consequence, some safe assumptions must be made about

the system to reduce the number of unknown quantities. By initially ignoring any internal

forces f and couple densities l, the number of quantities is reduced by 6 and one can further

(8) This system is defined with respect to the basis vectors d1,d2,d3.
(9) Second moments of area describe a rods resistance to applied forces in a particular direction, also

known as the area moment of inertia.

10



assume that the generalised couple m(s) takes the form: m = Au1d1 + Bu2d2 + Cu3d3,

where the constants A,B,C are given, but depend on the material structure(10). More for

simplicity, if the assumption that the quantities I1 and I2 are equal is made, this suggests

that the rod bends equally in all directions, implying a circular cross-section. The system

(3.1), (3.2) now reduces to,

∂n

∂s
= ρ

∂2r

∂t2
, (3.3)

∂m

∂s
+ d3 × n = ρI

(
d1 ×

∂2d1

∂t2
+ d2 ×

∂2d2

∂t2

)
,

where the aim is to directly solve for r(s). Taking the planar assumption(11) as previously

described in Section 2.2,

∂n

∂s
=

∂

∂s
(n1d1 + n2d2 + n3d3) =

(
∂n1
∂s

d1 + n1
∂d1

∂s
+
∂n2
∂s

d2 + n2
∂d2

∂s
+
∂n3
∂s

d3 + n3
∂d3

∂s

)
.

Then, by the definition of the basis vectors in equation (2.9), the first-order partial deriva-

tives are represented as follows,

∂d1

∂s
= −∂θ

∂s
d3,

∂d2

∂s
= 0,

∂d3

∂s
=
∂θ

∂s
d1. (3.4)

This further implies the partial derivative of the force n is given by:

∂n

∂s
=

(
∂n1
∂s

+ n3
∂θ

∂s

)
d1 +

∂n2
∂s

d2 +

(
∂n3
∂s
− n1

∂θ

∂s

)
d3. (3.5)

3.2 Solving the System

Henceforth, the objective will be to express ∂2r
∂t2 in terms of the basis vectors. Should one

differentiate the equation (2.11) twice with respect to a time t, it follows that,

∂2r

∂t2
=

∫ s

0

(
∂2θ

∂t2
d1 −

(
∂θ

∂t

)2

d3

)
ds′. (3.6)

(10) Area moments of inertia are in fact proportional to the bending coefficients A,B,C, related by a
material specific constant E known as the Young’s modulus. I look into this in further detail in Section
4.

(11) Quantitatively, u1 = u3 = 0.
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Observing the first equation of (3.3), as just described, equation of coefficients of the linear

independent basis vectors is not trivial, since integration of the basis vectors is imperative

when making a comparison to (3.6). The first equation of (3.3) can be expanded in the

following way,

(
∂n1
∂s

+ n3
∂θ

∂s

)
d1 +

∂n2
∂s

d2 +

(
∂n3
∂s
− n1

∂θ

∂s

)
d3 = ρ

∫ s

0

(
∂2θ

∂t2
d1 −

(
∂θ

∂t

)2

d3

)
ds′. (3.7)

Reducing the complication of the integral can be achieved by the Leibniz rule; differentiating

the above equality produces the equality below.(
∂2n1
∂s2

+
∂2θ

∂s2
n3 +

∂n3
∂s

∂θ

∂s

)
d1 +

(
∂n1
∂s

+ n3
∂θ

∂s

)
∂d1

∂s

+

(
∂2n3
∂s2

− ∂2θ

∂s2
n1 −

∂n1
∂s

∂θ

∂s

)
d3 +

(
∂n3
∂s
− n1

∂θ

∂s

)
∂d3

∂s
(3.8)

= ρ
∂2θ

∂t2
d1 − ρ

(
∂θ

∂t

)2

d3

Now by comparing coefficients of the basis vectors, with their derivatives defined in (3.4),

it follows that,

∂2n1
∂s2

+
∂2θ

∂s2
n3 + 2

∂n3
∂s

∂θ

∂s
− n1

(
∂θ

∂s

)2

= ρ
∂2θ

∂t2
, (3.9)

∂n2
∂s

= 0, (3.10)

∂2n3
∂s2

− ∂2θ

∂s2
n1 − 2

∂n1
∂s

∂θ

∂s
− n3

(
∂θ

∂s

)2

= −ρ
(
∂θ

∂t

)2

. (3.11)

Now focusing on the second equation of the system (3.3), with the triad of orthonormal

vectors, it is possible to notice that in this case,

d1 ×
∂2d1

∂t2
+ d2 ×

∂2d2

∂t2
=
∂2θ

∂t2
d2. (3.12)

This reduces the second equation of (3.3) to:

∂m

∂s
+ d3 × n = ρI

∂2θ

∂t2
d2. (3.13)

Comparing the d2 component of each term and assuming m takes the form as previously
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stated, using (2.4) to observe u2 = ∂θ
∂s provides the equality:

B
∂2θ

∂s2
+ n1 = ρI

∂2θ

∂t2
. (3.14)

Under these assumptions, the system (3.3) then reduces to the form shown below.

∂2n1
∂s2

+
∂2θ

∂s2
n3 + 2

∂n3
∂s

∂θ

∂s
− n1

(
∂θ

∂s

)2

= ρ
∂2θ

∂t2
(3.15)

B
∂2θ

∂s2
+ n1 = ρI

∂2θ

∂t2
(3.16)

∂2n3
∂s2

− ∂2θ

∂s2
n1 − 2

∂n1
∂s

∂θ

∂s
− n3

(
∂θ

∂s

)2

= −ρ
(
∂θ

∂t

)2

(3.17)

In order to solve this system, a specific type of solution can be expected, namely periodic

and oscillatory behaviours of the parameter s. But if the assumption is made that the

curvature of the rod κ = ∂θ
∂s stays comparatively small, the non-linear terms consisting of(

∂θ
∂s

)2
vanish, reducing the complexity of the system considerably.

Conjecture.

Any function defined on the real line can be represented by a Fourier series if it is

periodic.

In this case, I can assume that the forms of the periodic functions are written as Fourier

series as below.

θ(s, t) =

∞∑
m=1

a1m(s) cos(mPt) + a2m(s) sin(mPt), (3.18)

n1(s, t) =

∞∑
m=1

b1m(s) cos(mPt) + b2m(s) sin(mPt),

n3(s, t) =
∞∑
m=1

c1m(s) cos(mPt) + c2m(s) sin(mPt).

Here the constants m and P determine the number of modes and periodicity respectively. As

an example, evaluating (3.16) using the linear independence of the trigonometric functions,
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B
d2a1m

ds2
+ b1m(s) = −ρIP 2m2a1m, (3.19)

B
d2a2m

ds2
+ b2m(s) = −ρIP 2m2a2m. (3.20)

For equation (3.17), the right side can be expanded as,

−m2P 2ρ
[
a21m sin2 (mPt)− 2a1ma2m cos (mPt) sin (mPt) + a22m cos2 (mPt)

]
. (3.21)

This means coefficients of the cos (mPt) and sin (mPt) terms above can be compared, to

find that the second partial derivative of n3 vanishes, that is,

d2c1m
ds2

cos (mPt) +
d2c2m
ds

sin (mPt) = 0 =⇒ ∂2n3
∂s2

= 0, (3.22)

Instead, comparing the cos2 (mPt) , sin2 (mPt) and sin (2mPt) terms respectively, produces

the three following identities,

d2a1m
ds2

b1m + 2
db1m
ds

da1m
ds

= m2P 2ρa22m,

d2a2m
ds2

b2m + 2
db2m
ds

da2m
ds

= m2P 2ρa21m, (3.23)

d2a1m
ds2

b2m +
d2a2m
ds2

b1m + 2
db2m
ds

da1m
ds

+ 2
db1m
ds

da2m
ds

= −2m2P 2ρa1ma2m.

Similarly for the equation (3.15) it is now possible to notice,

ρ
∂2θ

∂t2
= −ρm2P 2

[
a1m cos (mPt) + a2m sin (mPt)

]
. (3.24)

Once again by the linear independence of the periodic functions,

2
∂n3
∂s

∂θ

∂s
+ n3

∂2θ

∂s2
= 0 (3.25)

=⇒ ∂2n1
∂s2

= ρ
∂2θ

∂t2
. (3.26)

In terms of the Fourier series coefficients, that is,
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d2b1m
ds2

= −m2P 2ρa1m, (3.27)

d2b2m
ds2

= −m2P 2ρa2m.

Under the assumption that c1m and c2m, which are linear from (3.22), are actually zero,

then,

a1m = − 1

m2P 2ρ

d2b1m
ds2

, a2m = − 1

m2P 2ρ

d2b2m
ds2

. (3.28)

Differentiating the equation (3.16) twice with respect to s produces,

B
∂4θ

∂s4
+
∂2n1
∂s2

= ρI
∂2

∂s2

(
∂2θ

∂t2

)
(3.29)

=⇒ B
∂4θ

∂s4
+
∂2n1
∂s2

= −m2P 2ρI
∂2θ

∂s2
(
a1m cos(mPt) + a2m sin(mPt)

)
(3.30)

=⇒ B
∂4θ

∂s4
+ ρ

∂2θ

∂t2
− ρI ∂4θ

∂s2∂t2
= 0 (3.31)

By the equations (3.28), substituting into (3.19) and (3.20) eliminates a1m and a2m from

the system, implying,

B

m2P 2ρ

d4b1m
ds4

+ I
d2b1m
ds2

− b1m = 0. (3.32)

This is a fourth-order ordinary differential equation (ODE) that describes the system under

all of the assumptions made.

3.2.1 Analytical ODE Solutions

Using traditional methods, I now look to solve the system in terms of an explicit analyt-

ical solution.

Let λ2± = m2P 2ρ
2B

(
−I ±

√
I2 + 4B

m2P 2ρ

)
and α± =

√
λ2±, then the solution to the differ-

ential equation takes the form:

b1m = γ1e
sα+ + γ2e

sα− + γ3e
−sα+ + γ4e

−sα− , γi ∈ R ∀ i ∈ [1, 4], (3.33)

which is an equally valid solution for b2m by symmetry, that is,

b2m = δ1e
sα+ + δ2e

sα− + δ3e
−sα+ + δ4e

−sα− , δi ∈ R ∀ i ∈ [1, 4]. (3.34)
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It follows that,

a1m =
−1

m2P 2ρ

(
γ1α

2
+e

sα+ + γ2α
2
−e

sα− + γ3α
2
+e
−sα+ + γ4α

2
−e
−sα−

)
, (3.35)

a2m =
−1

m2P 2ρ

(
δ1α

2
+e

sα+ + δ2α
2
−e

sα− + δ3α
2
+e
−sα+ + δ4α

2
−e
−sα−

)
. (3.36)

However, these solutions for a1m, a2m, b1m and b2m must also satisfy (3.15) and (3.16)

which is equivalent to (3.23).

d2a1m
ds2

=
−1

m2P 2ρ

(
γ1α

4
+e

sα+ + γ2α
4
−e

sα− + γ3α
4
+e
−sα+ + γ4α

4
−e
−sα−

)
, (3.37)

d2a2m
ds2

=
−1

m2P 2ρ

(
δ1α

4
+e

sα+ + δ2α
4
−e

sα− + δ3α
4
+e
−sα+ + δ4α

4
−e
−sα−

)
. (3.38)

With the solutions above, one can then notice,

d2a1m
ds2

b1m =
db1m
ds

da1m
ds

, (3.39)

d2a2m
ds2

b2m =
db2m
ds

da2m
ds

. (3.40)

By using these equalities, the system (3.23) can be rearranged into the following form:

a22m =
2

m2P 2ρ

d2a1m
ds2

b1m (3.41)

a21m =
2

m2P 2ρ

d2a2m
ds2

b2m (3.42)

Evaluating these using equations (3.33)-(3.38) and once again assuming the linear inde-

pendence of trigonometric functions, equating all coefficients of resulting exponential terms

gives that,

γi =

√
−δ2i

2
∀ i ∈ [1, 4]. (3.43)

Given the assumption that all coefficients γi and δi were non-imaginary, I conclude that the

only possible values that satisfy the system in this case are γi = δi = 0 ∀ i. Furthermore,

this implies that, a1m = a2m = b1m = b2m = 0.

As no external body forces are applied to the rod, only a single (trivial) solution exists,

which is: θ(s, t) = 0 = n1(s, t). Graphically, this solution is represented by a straight rod
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along an axis that neither bends, nor twists.

In order to obtain non trivial solutions, the idea of body forces f and torque densities l can

be reintroduced. When defining the system previously, these values were fixed to zero for

simplicity. Moreover, the system (3.1), (3.2) becomes,

∂n

∂s
+ f = ρ

∂2r

∂t2
, (3.44)

∂m

∂s
+ d3 × n + l = ρI

(
d1 ×

∂2d1

∂t2
+ d2 ×

∂2d2

∂t2

)
,

where f = (f1d1 + f2d2 + f3d3) and l = (l1d1 + l2d2 + l3d3), the system is modified with

the introduction of new terms,

∂2n3
∂s2

− 2
∂n1
∂s

∂θ

∂s
− n1

∂2θ

∂s2
− n3

(
∂θ

∂s

)2

+
∂f3
∂s
− f1

∂θ

∂s
= −ρ

(
∂θ

∂t

)2

, (3.45)

∂2n1
∂s2

+ 2
∂n3
∂s

∂θ

∂s
+ n3

∂2θ

∂s2
− n1

(
∂θ

∂s

)2

+
∂f1
∂s

+ f3
∂θ

∂s
= ρ

∂2θ

∂t2
,

B
∂2θ

∂s2
+ n1 + l2 = ρI

∂2θ

∂t2
.

Regardless, while attempting to mathematically model such a system, I will assume that

there exists some generalised internal force f and couple density l that satisfy the system as

a whole. Should it also be assumed that the curvature doesn’t grow too large (as assumed

in the unforced case), the terms consisting of
(
∂θ
∂s

)2
will dissipate.

I now look to adjust the system for the inclusion of a varied bending stiffness and observe

alterations in behaviour.
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Section 4

Variable Flexural Rigidity
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“The integrals which we have obtained are not only general expressions which satisfy

the differential equation, they represent in the most distinct manner the natural effect

which is the object of the phenomenon . . . when this condition is fulfilled, the integral

is, properly speaking, the equation of the phenomenon; it expresses clearly the character

and progress of it, in the same manner as the finite equation of a line or curved surface

makes known all the properties of those forms.”[11]

— Fourier, J. (1822)

This eloquent passage from Fourier accentuates the importance of integrals in the world

around us. Spoken even before the conception of the elastica theory, this quote encapsulates

the essence of the theory in its entirety.

In this section, I look at incorporating a variable bending stiffness according to thickness

and solve the differential system via numerical integration as discussed by Xavier (2014)

[12].

4.1 Explicit Derivation

With the system defined, I can begin to investigate the effects of changes in the bending

stiffness within the rod. This is possible by varying B along the arc-length of the rod; stating
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that it has explicit s dependence. I modify the dynamical derivation in the following way.(12)

B
∂2θ

∂s2
+
∂θ

∂s

∂B

∂s
+ n1 = ρI

∂2θ

∂t2
(4.1)

Assuming B ∈ C1, I return to solve the system. In terms of Fourier coefficients,

B(s)
d2a1m

ds2
+B′(s)

da1m
ds

+ b1m(s) = −ρIP 2m2a1m, (4.2)

B(s)
d2a2m

ds2
+B′(s)

da2m
ds

+ b2m(s) = −ρIP 2m2a2m. (4.3)

Since a1m and a2m are symmetric, I shall only solve for one and give the other a solution

of the same form. Similar to before, a solvable fourth-order differential equation can be

obtained:

B(s)

m2P 2ρ

d4b1m
ds4

+
B′(s)

m2P 2ρ

d3b1m
ds3

+ I
d2b1m
ds2

− b1m = 0 (4.4)

4.2 Physical Meaning

Since the physical meaning of a bending stiffness function is relatively arbitrary, I use the

fact that the bending stiffness of the rod is in fact proportional to the area moment of inertia

I(13): that is B = E · I, with proportionality constant E known as the flexural modulus.

I shall assume the system is an ideal state, implying the flexural modulus is equivalent to

the tensile modulus or Young’s modulus.

E
I(s)

m2P 2ρ

d4b1m
ds4

+ E
I ′(s)

m2P 2ρ

d3b1m
ds3

+ I(s)
d2b1m
ds2

− b1m = 0, (4.5)

Area moments of inertia can be explicitly calculated using the formula Ix =
∫∫
R y

2dydx, by

change of variables into polar coordinates, that is for a given radius R:

I1 = I2 = I =

∫ R

0

∫ π

−π
R3 sinϕ dϕdR =

πR4

4
. (4.6)

Substituting this into the defining differential equation, I have an equation based on a radial

(12) I merge the l2, ∂f1∂s , ∂f3∂s , f3
∂θ
∂s and f1

∂θ
∂s terms into the system and assume that some values of these

will satisfy the system. Varying B will not affect the solution of the first two equations in (3.45).
(13) As in Section 3, I assumed that the cross-section was circular, so the principal bending stiffnesses are

equal.
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function R(s) that can control the thickness of any given point s along the rod’s profile.

πE

4

R4(s)

m2P 2ρ

d4b1m
ds4

+
πE

4

(R4(s))′

m2P 2ρ

d3b1m
ds3

+
πR4(s)

4

d2b1m
ds2

− b1m = 0 (4.7)

4.3 Resolving a Solution

As shown in the unforced case, analytical solutions may exist. However, with more com-

plex coefficients this is not always the case. Therefore, relying on approximate numerical

solutions to the equation is crucial. Fortunately, in this case, the differential equations ap-

pear non-stiff, meaning any method is numerically stable and any deviation from the true

solution is considered negligible (Goriely, Nizette and Tabor, 2001) [13].

By formulating the model in Python 3.9.2, I have implemented scipy.integrate.odeint(14)

from the scipy package [14]. This makes use of a specific type of method, known as the

implicit Adams-Bashforth method.

4.3.1 Adams Multistep Methods

These multistep methods use initial-valued boundary conditions to numerically generate

interpolating polynomials. Given the differential equation,

y′(s) = f(s, y(s)), (4.8)

the Adams-Bashforth method is specified by the iteration with error of order O(h4), for

`i the Lagrange polynomials [15]:

yn+m = yn+m−1 + h

m−1∑
i=0

bif(sn+i, yn+i),

bi =
1

h

∫ h

0

`i(sn+m−1 + u) du.

With numerical solutions for b1m and b2m, using (2.11) and the following equivalence, re-

solving for r produces,

θ(s, t) = − 1

m2P 2ρ

∞∑
m=1

[
d2b1m
ds2

(s) cos(mPt) +
d2b2m
ds2

sin(mPt)

]
. (4.9)

(14) Should the boundary conditions on the system change, it may be beneficial to change from an initial-
value problem to a boundary-valued problem, such as scipy.integrate.solve bvp, described in detail
in Section 4.5.
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To determine r from θ one must integrate. This requires that I use a method of numerical

integration, given a specific number of steps.

4.3.2 Simpson’s Rule for Numerical Integration

I use Simpson’s rule for integration and evaluate at every s across the length of the rod,

providing a set of Cartesian coordinates. This was possible, once again, by implement-

ing the scipy package into the Python integrated development and learning environment

(IDLE). This method makes use of the composite Simpson’s rule, which evaluates subin-

tervals as an alternative, to improve accuracy.

For a generic integral, ∫ b

a

f(x)dx, (4.10)

this can be approximated by the composite Simpson’s method, with the interval [a, b]

dissected into n sub-intervals. For n even, h = b−a
n and xj = a+ jh, ∃ ξ ∈ (a, b) :

∫ b

a

f(x)dx ≈ h

3

f(a) + 2

n/2−1∑
j=1

f(x2j) +

n/2∑
j=1

f(x2j−1) + f(b)

− h4

180
(b−a)f (4)(ξ) (4.11)

The last error term in the formula is of order O(h4). Using a suitable value of n steps,

it is now possible to recreate the central curve r.

Running the model requires a set of input variables that describe and determine the be-

haviour of the system, notably:

• the length: L ;

• modes and periodicity: m,P ;

• initial conditions: γ = [γ1, γ2, γ3, γ4], δ = [δ1, δ2, δ3, δ4];

• material density: ρ ;

• radial function: R(s).

The initial conditions γ, δ, in particular, affect the solutions variously. In a physical sense,

these conditions represent the starting state of the rod in the following way,

b1m(0),
db1m
ds

(0),
d2b1m
ds2

(0),
d3b1m
ds3

(0) = γ1, γ2, γ3, γ4, (4.12)

b2m(0),
db2m
ds

(0),
d2b2m
ds2

(0),
d3b2m
ds3

(0) = δ1, δ2, δ3, δ4, (4.13)
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though at first glance do not represent translatable quantities.

R(s) and L can be physically interpreted with ease; however, whilst I can vary the other

parameters to observe changes in the solution, these are less visually interpretable, like the

initial conditions. It is therefore important to clarify the impact that each parameter has on

the solution and justify the validity of every decision when looking at real-world/physical

examples.

4.4 Length Dependence

Before I begin to explicitly observe behaviours based on the radial function, I shall examine

the effects that the other perceptible quantity, length, has. As in Figure (4.1) - that shows

a simple exponentially decaying radius - this shows two nearly identical rods, with only the

length being varied by a factor of 0.75. Despite only a minor difference in length, their

behaviours differ quite significantly. The longer rod bends at a much greater rate than its

counterpart, but the periodicities remain very similar, so it is apparent that the angular

velocity at the end of each rod also varies significantly between the two simulations.

(a) (b)

Figure 4.1: Numerical time solutions of two rods with decaying exponential
thicknesses. Both have identical parameters, with the exception of length. (a)
L = 2,m = 5, P = 1, ρ = 1.5, R(s) = 10e−s,γ = δ = [1, 1, 1, 1]. https:

//kapwi.ng/c/yyOQR5aL. (b) L = 1.5. https://kapwi.ng/c/g52VAMEx.
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For any general rod with a fixed initial position, this type of behaviour is to be expected

and shall assume true; nevertheless, notwithstanding these observations, it may prove to be

that a variation in the radial function plays a significant part in the dependence of length.

4.5 Boundary-Value Problems

The aforementioned initial conditions that initialise the system provide little physical under-

standing into how the rod should behave under these given conditions. This is because any

initial condition for a fourth-order derivative in a complex system, such as this, is visually

arbitrary. Upon looking at real-world examples, transforming to a boundary-valued prob-

lem enables the freedom to explicitly state directives for the rod, providing more intuitive

and justifiable reasoning.

Figure 4.2: Numerical time solution of a rod with a varying sinusoidal
thickness. L = 2,m = 5, P = 3, ρ = 1.5, R(s) = 20e−s

(
sin(s) + 1.4

)
.

https://kapwi.ng/c/wi89YEjz

Figure (4.2) displays just how influential initial conditions can be to the model. Whilst

the general bending motion in this case is monotonous, the boundary valued conditions

provide a varying type of overarching behaviour. This example uses the following boundary
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conditions to function:

r(0) = 0,
d2r

ds2
(0) = 5,

dr

ds
(L) = 2,

d2r

ds2
(L) = 5.

The integrate.solve bvp function from the scipy package used here implements a fourth-

order collocation scheme, using a damped Newton method [16]. This allows the inclusion

of boundary conditions at both ends of the rod. On the contrary, the initial value method

gives the user greater control over the defining behaviour of the rod, particularly useful in

classifying such actions.
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Section 5

Categorical Solutions

5.1 Types of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Waving Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.2 Whipping Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Deviation from Constant Bending Stiffness . . . . . . . . . . . . . . . . . 28

5.3 Irregular Material Density . . . . . . . . . . . . . . . . . . . . . . . . . . 29

In this section, I look to present the results of observations and numerical experiments,

with a desire to categorise observed behaviours. I initially set out on improving a general

model for the elastica theory in real-world applications, so shall thereafter, focus on physical

applications of this mathematical model.

Although very specific parameters must be stated to initialise the simulation, this problem

should only be of concern when looking to accurately represent real-world examples(15).

5.1 Types of Solutions

By varying the radial function R, it can be noticed that the rod exhibits substantially dif-

ferent behaviours based on the solution. In fact I notice two distinctive types of behaviours,

a stabbing or prodding motion and a whipping type of motion.

5.1.1 Waving Motion

As a result of the assumption that solutions take a periodic form, all rods oscillate

around a central line. This type of waving and stabbing motion usually only impacts

the overall profile of the rod minimally. One particularly interesting case is a sinusoidal

(15) Typical values of the Young’s modulus are given in these examples, solely to demonstrate the type of
behaviour.
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radial function as shown below in Figure (5.1)(16). As the rod oscillates throughout time

Figure 5.1: Numerical time solution of a rod with a varying sinusoidal thick-
ness. L = 2,m = 4, P = 1, ρ = 2, R(s) = 20

(
sin(s) + 1.4

)
,γ = [3, 2,−2, 1], δ =

[3, 2, 3,−10]. https://kapwi.ng/c/PVfab1vz

it should become clear that it’s structure does not curl or coil. Instead, as a result of the

sections with smaller radii, the magnitude of displacement increases. Physically this is

what is to be expected; these parts of the structure are typically weaker in comparison

to sections with a larger radius, which deform at a reduced rate.

Should the forces applied be of ample magnitude, the rod may begin to buckle. Derived by

Euler, the critical buckling load is proportional to the area moment of inertia, suggesting

that as the radius decreases, the critical load limit lessens and it is more probable that

buckling will occur [17]. It is also interesting to notice that the segments furthest from

the fixed point deform substantially more, as a result of applied moments.

This type of motion occurs for a few different functions such as the hyperbolic cosine

and stiff constant functions.

(16) The centre-line on which the entire behaviour of the rod is governed by is also shown in a lighter colour.
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5.1.2 Whipping Motion

Whipping motion results in the formation of tight coils during oscillations. Similar to

how a whip might behave, this type of motion often happens quicker than any other. As

discussed previously, the smaller cross-sections begin to bend in a more extreme manner;

so as the radial function of the rod decreases towards the end point, the segment furthest

from the fixed point begins to coil and tighten - producing a type of whipping motion.

Therefore, any monotonically decreasing function should, to some degree, exhibit this

category of behaviour.

(a) (b)

Figure 5.2: Numerical time solutions of two rods, both with a decay-
ing exponential thickness. (a) L = 1.95,m = 5, P = 1, ρ = 2, R(s) =
10e−s,γ = [1, 1, 1, 1], δ = [1, 1, 0.8,−0.1]. https://kapwi.ng/c/L08IOgbP.(b)
L = 1.93,m = 4.7, P = 2.3, ρ = 2, R(s) = 10e−s,γ = [0.2, 0.1,−0.1, 0], δ =
[0.1, 2, 0.2,−0.5]. https://kapwi.ng/c/ExmaD7pN

As shown in Figure (5.2a), the rod demonstrates a striking whip-like resemblance. How-

ever, since the assumption that the rod lies in a single three-dimensional plane was made,

the overlap in fact causes this solution to be nullified. Even without the planar assump-

tion, solutions like this can be extremely difficult to calculate, whilst introducing the

concept of contact mechanics to model interactions the rod makes with itself.

On the contrary, this does not mean general solutions like this do not exist. By ma-

nipulating the input variables, any solution without a self-intersection can be justifiably

valid as in Figure (5.2b). In this figure, I have also included the approximate magnitude

of distance traced by the end point over one oscillation; this is to emphasise just how

varied different behaviours can be.
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5.2 Deviation from Constant Bending Stiffness

Refocusing on the motivation behind this project, authors of papers focusing on this style of

elastica theory broadly assume a constant bending stiffness. Having studied two main types

of motion, it is clear that a variable bending stiffness produces very different solutions. I,

therefore, now aim to quantitatively verify this statement by comparing the two rods(17).

(a) (b)

Figure 5.3: Comparison solutions for constant radius function. (a) L =
3,m = 5, P = 1, ρ = 4, R(s) = 3(sin 9s + 1.3),γ = [1, 2, 2, 1], δ = [1, 2, 2, 1].
https://kapwi.ng/c/K7aSAokS. (b) L = 2.1,m = 5, P = 1, ρ = 1.5, R(s) =
10e−s,γ = [0, 1, 1, 1], δ = [0, 1, 1, 1]. https://kapwi.ng/c/CCXxhsXs

By initial observations of Figure (5.3a)(18), the general movement of the rod varies only

slightly against the same rod with constant bending stiffness assumed(19). In the case of a

sinusoidally varying radius with roughly uniform behaviour, it can be justified to assume

a constant radius. On the other hand, in Figure (5.3b) one can notice the maximum

deviation of all corresponding points on each rod rises above 40% of its total length. This

is a significant difference that can hardly be justified in any exponential decay example.

(17) The deviation between the two is measured as a proportion of length L and will be for all following
animations.

(18) Providing the sinusoidal example with the same parameters as the exponential example, the deviation
becomes negligible, so in this case is fairly uninteresting. I intentionally gave different parameters to
highlight the fact that the sinusoidal case does in fact deviate from the constant case.

(19) As shown by the transparent rod superimposed behind.
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5.3 Irregular Material Density

The flexural rigidity or bending stiffness of any object does not only depend on its thickness

or radius; it can also rely on the internal structure of the rod. In all of the cases above,

the assumption that the material density is constant was made; however, suppose that the

internal structure is non-uniform, then this type of rod with a constant radial function may

behave in a similar manner to the simulations already presented in this paper(20).

Having stated the dynamical Kirchhoff system, it is not possible to explicitly derive the

full governing equation for a variable material density. However, similar to the assumptions

made previously about curvature, I make the assumption that any new terms that should

arise vanish. Directly, this means that any order of partial derivatives of ρ can be suitably

ignored, assuming that the rate of change in ρ is insignificant. It is important to verify

these conditions. The derivative of the function for ρ stated in the caption of Figure (5.4)

is satisfactory, such that any derivative remains relatively small compared to other terms

in the governing differential equation.

Figure 5.4: Numerical time solution of a rod with constant thickness but
varied material density compared to a rod with both variables constant. L =
2,m = 5, P = 1.3, ρ(s) = 0.8e1.2s−2, R(s) = 10,γ = [3, 1, 1, 2], δ = [1, 1, 1, 1].
https://kapwi.ng/c/bzQffagr

(20) No adjustments to the system need to be made in order to accommodate this change. Simply stating
a varied material density over the rods length will suffice under the following assumptions.

29

https://kapwi.ng/c/bzQffagr


The example shown in Figure (5.4) demonstrates the dynamics of such a rod with varied

material density. The density increases at an exponential rate, causing the end of the rod

to oscillate with greater amplitude, whilst retaining the same periodicity. It is compared

to a similar rod(19), with constant density ρ = 2. The point at which the densities are

equivalent is represented by the red dot, where one can notice the dot steadily remaining on

the central curve of the superimposed rod behind. Both observed rods have the same initial

conditions, so the maximum, measured, absolute deviation between them is calculated along

with the displacement of the varied rod from a central horizontal line, which both underline

a fundamental change in behaviour.

In comparison to an exponential radial function example, similar to Figure (5.3b), the

deviation from the constant case is relatively similar in Figure (5.4). However, providing

this new rod with equivalent given conditions to Figure (5.3b), whilst varying the radius

with the same density exponential function stated in Figure (5.4) and reverting to a uniform

density, the change in geometry and curvature grows sufficient to violate the assumptions

made when formulating the model. This implies they cannot be directly compared, yet it

is clear to see that this variation in material density does not provide the same type of

whipping motion as already categorised.

(a) (b)

Figure 5.5: (a) Numerical time solution of a rod with both varying si-
nusoidal thickness and material density. L = 2,m = 5, P = 1.3, ρ(s) =
0.11(sin (9s+ π) + 3), R(s) = 3(sin 9s + 1.3),γ = δ = [1, 2, 2, 1], E = 1.2 × 108.
https://kapwi.ng/c/tVwcBW0u. (b) Numerical time solution of a rod with
varying exponential thickness and modified sinusoidal material density. L =
1.5,m = 5, P = 1, ρ(s) = 0.7(sin (9s+ π) + 1)e−2.7s + 0.1, R(s) = e2−0.7s,γ =
[2,−0.4, 0, 2], δ = [3, 0.2, 1,−4], E = 1.2×108. https://kapwi.ng/c/KDK2ZqW2.
(ρ in red, R in blue).
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Often structures are made of composite materials and are not always uniformly dense.

The combination of both a varied material density and variable thickness poses a new,

interesting behaviour. Figure (5.5) illustrates the numerical time solutions of rods both with

sinusoidally-varying material densities, while Figure (5.5a) shows a sinusoidal thickness and

Figure (5.5b) demonstrates an exponential radial function.

Figure (5.5a) is constructed in such a way that the structure of material density accentuates

the typical sinusoidal behaviour. The sections of thinner radius oscillate at an increased

rate, where the superimposed sinusoid with constant material density acts almost as an

averaged curve through the rod. The deviation (again measured as a proportion of length)

between the two attains its maximum at the limit of its oscillation.

The more interesting behaviour arises from the combination of exponential thickness and

sinusoidally decaying material density. Shown by Figure (5.5b), the rod begins to exhibit

both features from the waving and whipping motion. In comparison to the constant material

density case (superimposed behind), the end point of the rod coils significantly less, as a

direct result of the varied density. On the other hand, the magnitude of deviation is notably

larger in this case and in fact does not occur at the limit of oscillation.

31



Section 6

Relating to Real-World Examples
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Given several specific types of solutions, there are similar patterns of how objects in the

real-world behave. However, for these solutions to be physically accurate, it must be re-

membered that certain forces f and l must act on the system to satisfy it. This means that

any example must have realistic forces acting on it. Such forces may include fluid viscosity

or a magnetic inductive force.

Most physical examples represented by this model occur within viscous fluids, such as water

or blood. The force generated by viscosity is proportional to the velocity gradient and area,

so provides suitable values for the generalised internal forces f and couple densities l.

However, one variable used to initialise the system is the flexural modulus, which, as as-

sumed previously, is equivalent to the Young’s modulus. This is a material property based

on its ability to withstand tension or compression. Values for most materials lie in a range

between 0.01 GPa and 1000 GPa, with common values cited by Helmenstine (2021) [18], so

it is therefore important to state a value in every case. This quantity must be physically

determined in every situation, which in this project is not always possible; therefore, I use

known values similar to the example chosen to represent the material in question. The

models in the previous section have also been provided with a suitable Young’s modulus

value to emphasise the defining motion in each case.

These values for the flexural modulus can be applied to several real-world examples. Be-

low, I endeavour to explore the types of categorical behaviours in the instance of biological

applications, as well as the consideration between form and function.
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6.1 Crustacean Antennae

Antennae in crustaceans is an example of serial homology (University of California Museum

of Paleontology [19]). All crustaceans have two appendages in common, namely antennules

and secondary antennae, with the latter having greater length. The precise purposes of

these appendages are not fully known; they are primarily used for sensory, but are also

thought to be used in communication and enhancing stability (Boxshall, 2013) [20] and

(Vickery, Hollowell and Hughes, 2012) [21].

The general structure of crustacean antennae is composed of many sections known as flag-

ellum, distinctly controlling the behaviour of its movement. Although antennae naturally

occur in various shapes, they can be generally described by a decaying sinusoidal function

as shown in Figure (6.1a).

The approximation in Figure (6.1b) is a perfect example of the waving motion described

in the previous section. It is clear to observe that the magnitude of oscillations remain

relatively small; yet, as expected, the structure tends to bend at a greater rate where the

radius is minimised, combining behaviours of both types of motion described previously.

(a) (b)

Figure 6.1: (a) Biological structure of crustaceans. [22] (b) Numeri-
cal time solution of a rod with decaying exponential thickness, representing
crustacean secondary antennae. L = 6,m = 4, P = 1, ρ = 0.5, R(s) =(
e2−3s + 1

) (
sin (20s− 1) + 1

)
− 0.3s+ 2,γ = [3, 2,−2, 1], δ = [3, 2, 3,−10], E =

0.8× 109. https://kapwi.ng/c/8fCrxssv.

Although an approximate radial function can easily be suggested, a value for the Young’s

modulus of the material must be defined. Based on similar known values, I provide the
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model with a value based on the stress/strain ratio of low-density polyethylene (LDPE)

(0.8× 109 Pa) for the antenna, where the structure of antennae is discussed in more detail

by Loudon (2005) in the paper titled: ‘Flexural Stiffness of Insect Antennae’ [23].

Concerning functionality, the antenna may need to become flexible, particularly if used in

stability. This may also need to become rigid in the onset of strong underwater currents.

Incorporating both factors, perhaps leads to the reasoning behind the geometric structure

displayed above.

6.2 Sperm Cells

Sperm cells and crustacean antennae are very contrasting examples, but can both be mod-

elled using exponential functions. This time I model the cell using a Gaussian function,

rather than including any periodic function as before.

However, unlike the antennae, the reason sperm cells are shaped in the way that they are, is

for efficiency in movement. The body is streamlined, where the head narrows in an attempt

to reduce drag upon movement through a fluid (MicroscopeMaster.com) [24]. As already

seen, exponential functions produce whipping motion, which in the case of movement,

(a) (b)

Figure 6.2: (a) Numerical time solution of a rod with a modified Gaussian
function thickness, representing the behaviour of a sperm cell. L = 4,m =
6, P = 4, ρ = 0.3, R(s) = 27e−(−3.7s+1.5)2 − 0.3s + 1.4,γ = [3, 0.5, 0.5, 3], δ =
[−2,−5, 1, 5], E = 0.07 × 109. https://kapwi.ng/c/cZkKxhJA. (b) Biological
structure of a sperm cell. [25]

generates velocity in an efficient manner by displacing the fluid particles to propel itself.
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This is shown by the sheer magnitude of oscillations exhibited by the tail of the sperm

cell; this exaggerated whipping motion is typical of sperm cells, where the model had been

provided (as a variable in Equation (4.7)) with a smaller value for the Young’s modulus

(0.07× 109 Pa) to introduce this motion.

Notice in Figure (6.2a) the head remains relatively still in comparison to the tail, this is

important as sperm cells need to travel in a particular direction. Ensuring the head is

stable keeps the cell on course. As seen previously, wider sections tend to resist bending

at a greater rate. While the head contains the nucleus and other important parts, this

observation may also justify why sperm are shaped in this unique way.

6.3 Octopus Tentacles

Similar to antennae, tentacles are attached to a (relatively) fixed body, unlike sperm cells,

which, as a single entity, move through fluids and are free to bend in any direction(21).

The arms, to be biologically meticulous, have various functions for the invertebrate. Despite

the similarity in appearance, the back two arms are used, primarily, for movement; whilst

the other six can also enable movement, they are used for grabbing prey and are sensory

(Hall n.d.) [26].

Unlike the previous examples, octopus tentacles have a more complex internal structure,

which for the purpose here is to be assumed uniform. However, it may more accurately be

modelled using a varied material density as discussed in Section (5.3). As a result of this

more elaborate structure, it becomes harder to approximate the Young’s modulus. I have

provided a suitable value of 0.16× 109 Pa, just above a typical value for tough rubber.

A standard decaying exponential function, as shown in Figure (6.3), provides a great basis

in modelling a tentacle, where the combination of external conditions generates the exag-

gerated whipping motion. Figure (6.3a) exemplifies the type of behaviour tentacles are

expected to possess; the tight coiling at the end can be used to grapple under-water objects

and similar to the previous sperm cell example, this whipping-like motion is efficient in

generating movement.

(21) Tentacles move independently of the body they are attached to, whereas the sperm tail and body move
and bend in unison.
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(a) (b)

Figure 6.3: (a) Numerical time solution of a rod with a significant ex-
ponential decaying thickness, representing the behaviour of octopus tentacles.
L = 2,m = 5, P = 1.3, ρ = 1.5, R(s) = 10e−2.8s,γ = [−0.3, 5,−5, 0.3], δ =
[5,−2, 0.1,−0.5], E = 0.16× 109. https://kapwi.ng/c/2EiUU53O. (b) Typical
example of an octopus’s tentacles. [27]

6.3.1 Variation in Curvature

Revisiting the derivation of the system, it is important to remember the assumptions

made, ensuring these systems conform to what was assumed true. One such assumption

made was that the curvature remains sufficiently small across its length. Up to this point,

examples where the curvature grows exponentially large have not been encountered;

however, in the example of tentacles, the tight coiling at the end of the arms begins to

contradict this assumption.

Precisely, the assumption stated that the term
(
∂θ
∂s

)2
vanishes (as discussed in Section

(3.2)). However, in this particular case, the curvature ∂θ
∂s can be calculated using the

model, where it reaches a value over 20. Evidently, the square of this term cannot be

simply ignored, but becomes the dominant term in the governing equation. This means

that the general shape of Figure (6.3a) is not incorrect, but the inaccuracy of the solution

is proportional to the curvature, becoming imprecise as the rod coils tighter.
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6.4 Other Examples

As demonstrated by the preceding examples, applications of this model usually occur with

varied thickness in biological instances. Whilst, as discussed earlier, Goyal, Perkins and

Lee (2005) [5] analyse the instabilities of elastic rods and effect of supercoiling(22) in marine

cables, cases of man-made examples do exist and present interesting research opportunities.

6.4.1 Auxetics

Auxetic materials are one example of this type of structure. All models thus far have

been of non-auxetic materials, where the difference between the two materials arises from

the sign of its Poisson ratio. Auxetic materials subjected to stretching longitudinally do

not become thinner but the opposite: growing thicker in a perpendicular dimension

(Comet, 2016) [28]. There are in fact naturally-occurring structures that have this type

of behaviour, one example is silicate α-cristobalite (Grima et al., 2005) [29].

Figure 6.4: Typical behaviour of auxetic materials under an applied force.
[30]

The dynamical changes in the internal structure of auxetic materials require very spe-

cific bending and twisting in order to create this defining deformation, which is why it is

not possible to trivially incorporate into this model. The importance of twisting to this

motion cannot be overstated, implying that a three-dimensional model must be used.

Despite this, it is clear the internal structure should vary periodically, similar to the

method by which the flexural rigidity and material density are varied.

(22) Supercoiling is the process by which lengths of rod excessively twist (coil), while becoming entangled.
Usually associated with DNA.
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DNA and flagella are two examples researchers commonly use in the Kirchhoff elastic rod

model. Whilst DNA requires an element of twisting to function, flagella demonstrates

a striking resemblance to the exponential whipping motion of elastic rods in this paper.

As shown by Park et al. (2017) [31], the flagella can be modelled on a rotary motor to

demonstrate an enforced whipping motion. Although their paper has observed the buckling

instabilities, it also makes use of an equilibrium model and assumes a constant radius,

which, as already shown, produces a significant shift in behaviour.
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Conclusions
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On the mathematical modelling of the elastica theory, researchers often assume that the

structure of elasticated rods and knots are uniform; this includes both the internal and

external structure. In reality, this assumption can be valid for small deviations in structure,

but restricts the freedom to accurately model rods with even a moderate change in profile.

This idea is reinforced by the conclusions in Section (5.2), where significant changes in

profiles in the exponential case can be seen. Again, looking at types of auxetic materials,

ignoring any variation in internal structure completely disregards their defining behaviour.

This exemplifies just how critical the inclusion of a varied bending stiffness and material

density can be to the solution. Applications within engineering are particularly crucial, as

variations, even to the degree of millimetres, can cause catastrophic damage to a structure.

7.1 Numerical Conclusions

Conclusions already made, have been based, generally, on visualisation. The change in

behaviours in the rods are coherently communicated through the simulations, such that

numerical evaluations only reaffirm the visual conclusions. I have used various types of

numerical conclusions throughout the models in order to quantitatively support these con-

clusions.

By comparison, one would suspect that for the same conditions, i.e. only varying the radial

function, a rod exhibiting this whipping motion oscillates at a greater amplitude than a

rod exemplifying a waving behaviour. A quick, visual assessment supports this theory, yet

by comparison of the antenna and tentacle examples, it is possible to measure the distance

travelled by the end point of both rods, given the same periodicity. After a time t = 1.50,
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the antenna (of length 6) travels a total distance of 18.270, whilst the tentacle (of length 2)

only traces a curve of length 9.633; yet, comparatively measured as a proportion of length,

the tentacle oscillates at a greater relative magnitude.

In Section (5.2), a comparison between the two types of motion and a uniform structured

rod is given. Even though the conditions vary slightly(23) the magnitude of deviation is

great. However, given the same conditions in both cases, it becomes apparent that the de-

viation of the sinusoidal example becomes negligible, further demonstrating the difference

in dynamics between the two simulations. By measuring deviation as a proportion of total

length, the sinusoid deviation rises to a maximum value of 0.053, whereas the exponentially

decaying rod reaches a maximum value of 0.413. In both cases, this occurs at the end point

of the rods; however, in general, it should not necessarily be assumed that the maximum

deviation will always occur here and each instance should be investigated separately.

7.2 Limitations of the Model

One distinctly noticeable feature common in all of the rods is achirality. Similar to symme-

try, it is the property that at some further point in time, the mirror image of the rod also

exists. Relating to any example from our model, the mirror image of any single snapshot of

the rod also occurs within the time loop. This is an inherent feature from the assumption

that some (unstated) forces would satisfy our system. Looking beyond this project, it may

be possible to state explicit forces, varied over time, to eliminate this constraint to the

solution.

Whilst conditions like this increase the complexity of the system, it is still mathematically

solvable. However, as noticed by Shan and Chen (2013) [32], the instability of thin elastic

rods presents a problem for the existence for viable solutions. In particular, I notice that

in the case of very thin rods, the solution does not converge, and interestingly, also for

exponentially decaying rods of substantial length. This is the reason for using relatively

short lengths in any exponential case, as well as dividing numerical conclusions by length

for comparison.

Perhaps the biggest hindrance to the accuracy of solutions in the model was some of the as-

sumptions made. To recall, the majority of these assumptions were made so that the system

could be numerically solved and were entirely necessary to do so. However, it is possible

that different methods and alternative assumptions could be beneficial to the model.

(23) As mentioned previously, this was intentional to highlight the defining behaviour of a sinusoidal rod.
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7.3 Retrospective Approach

While it was stated that the governing differential equations in Section 2 were non-linear, it

was assumed that the non-linear term vanishes. This made the system significantly easier

to solve, but in particular cases provided approximations of the solution. As a result of

limitations of the initial, given system(24), the non-linear terms have been appropriately

ignored. However, applying the same numerical methods for solving ODEs, it is possible to

discount this assumption all together and generate simulations of extreme curvatures.

Another assumption was that the expected solutions take a periodic form. If a different

periodic function was applied, rather than a combination of sinusoidal functions in the

Fourier series, a change in solutions could have been observed.

7.4 Future Research and Applications

Having already shown that overlapping solutions are not plausible as a result of contact

mechanics, it is possible that the modelling of post-buckling behaviour can be included to

show the effects of structural weakening, as researched by Almet et al. (2019) [33]. One

might theorise that minimum points of a sinusoidal radial function are likely to display this

type of buckling behaviour under tension. This may in fact be modelled by a variation in

material density; however, the onset of buckling behaviour occurs over time, so it would not

be trivial to incorporate into this model.

Mathematical modelling is a process by which a description of a dynamical system is pro-

duced using mathematical and physical theory. This branch of mathematics aims to simulate

and reproduce real-world examples in near ideal conditions. In microscopic biology, future

applications of models, similar to the one used in this paper, are seemingly limitless.

The primary purpose of bacterial flagellum is movement, but these appendages also react to

disparities in chemical makeup and temperature (BiologyDictionary.net) [34]. By modelling

the precise movement of bacterial flagella motors(25), it becomes possible to manipulate the

movement and behaviour of bacterium. Furthermore, this can be used to target particu-

lar areas of the body, using bacteria as a vessel for drugs, or on the contrary, inhibit the

movement of harmful bacteria, as discussed by Baker and Matzke (2019) in their article

titled: ‘Evolution or intelligent design? The story of the bacterial flagellar motor’ [35].

(24) The initial, given system refers to the set of equations (3.9)-(3.11) where the non-linear terms did not
appear.

(25) As discussed by Park et al. (2017) [31].
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Similar theory was taken further by Zhang et al. (2009) [36], introducing the concept of an

artificially controlled bacteria using electromagnetic fields, initially tested in water using a

soft magnetic head.

From the Kirchhoff rod theory first introduced in 1859 to the present day, the growth

and diversity of studies into the topic of elastica theory has allowed research to span a

plethora of disciplines. In this paper, I proudly contribute to this ever-growing research

domain by introducing variations in material structure. Proposing the idea of categor-

ical solutions based on behaviour and real-world function helps to subdivide any future

behaviours according to type of motion displayed.

Upon giving comparison to both common real-world examples and assumed uniform

structures, my focus has been to coherently and justifiably communicate the conse-

quential importance of including even a slight variation in structure.
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Glossary

Appendages

A section of an organism that pro-

trudes from its body, having a

unique and adapted function.

Bifurcation conditions

Any small alteration to the input

values can cause a significant topo-

logical change to the rod. As an ex-

ample, the formation of loops in the

rod cause instability.

Collocation scheme

An algorithm for the numerical solu-

tion of ODEs by choosing a family of

solution functions evaluating at nu-

merous points in the domain. [37]

Critical buckling load

The critical load at which the ob-

ject subjected to a force suddenly de-

forms its profile.

Damped Newton method

Used in conjunction to a collocation

scheme, this is a method used to find

roots of a real-valued function.

Flagella

A whip-like appendage occurring on

bacteria, that serves as an aid for

movement and chemotaxis. [38]

Flexural modulus

A measure of the material’s resis-

tance to bending when a force is ap-

plied orthogonal to the longest edge

of the rod.

Poisson ratio

The Poisson ratio measures the ra-

tio of lateral strain to longitudinal

strain. With typical values lying in

the range of 0 to 0.5.

Serial homology

The process of evolution by which

various organs or appendages adapt

to provide alternative functions.

Variational theorem

A variational principle is a method,

enabling a particular problem to be

solved using the calculus of varia-

tions via optimisation.
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A.1 Python Code using odeint

1 # Module imports

2

3 import math , sympy , numpy as np, matplotlib.pyplot as plt , sys , os ,

datetime

4 from scipy import integrate

5 from scipy.integrate import odeint

6 from pylab import *

7 from matplotlib.collections import LineCollection

8 os.environ["IMAGEIO_FFMPEG_EXE"] = "/usr/bin/ffmpeg"

9 import moviepy.video.io.ImageSequenceClip

10

11 # Plot customisation

12

13 plt.style.use(’seaborn -dark’)

14 plt.rcParams[’xtick.labelsize ’] = 0

15 plt.rcParams[’ytick.labelsize ’] = 0

16 plt.rcParams[’axes.prop_cycle ’] = plt.cycler(color=["#0 c2c6b", "#

f4f4f4", "0.7"])

17 plt.rcParams[’axes.facecolor ’] = ’#f4f4f4 ’

18 plt.rcParams[’axes.grid’] = True

19 plt.rcParams[’axes.edgecolor ’] = ’#bfbfbf ’

20 plt.rcParams[’axes.linewidth ’] = 1

21 plt.rcParams[’grid.color’] = ’#ffffff ’

22 plt.rcParams[’font.family ’] = ’serif’

23

24 # Definitions

48



25

26 # N: No. of iterations for the solution , for individual times.

27 # L: Length of the rod.

28 # r0: Starting position (independent of t) [.,.]

29 # m: No. of modes.

30 # P: Period of repetition.

31 # I: Area moment of inertia.

32 # rho: Material Density (can be varied in s)

33 # R: Radial functions defining variation in thickness.

34 # B: Bending Stiffness: (pi*E*R**4) /4. Given some E: Young ’s modulus

.

35 # trange: Range of time.

36 # gamvec , delvec: Initial boundary conditions.

37 # Bdash: Explicit derivative of B (defaults to zero).

38

39 def imgsoln(N, L, r0 , m, P, rho , R, B, trange , gamvec , delvec , Bdash

= 0):

40 co = -1

41 tno = 368 # Number of time steps from 0 to trange.

42 for t in np.linspace(0, trange , tno):

43 co += 1

44 cosint , sinint = [], []

45 if (type(B) is list): # B entered as a polynomial

46 q = sympy.Symbol(’q’)

47 poly = sum(c*q**i for i, c in enumerate(B))

48 Bdash = sympy.diff(poly)

49 for i in range(1,N+1):

50 b = i*L/N

51 s = np.linspace(0, b, 40)

52

53 if (type(B) is list):

54 Bfunc1 = poly.evalf(subs={q:b})

55 Bdash1 = Bdash.evalf(subs={q:b})

56 elif callable(B) and Bdash != 0:

57 Bfunc1 = B(b)

58 Bdash1 = Bdash(b)

59 else:

60 print(’B or Bdash given incorrect input.’)

61 sys.exit()

62

63 I = (np.pi*(R(b))**4)/4 # Area moment of inertia defined

from the radial function R.

64 coefs = [Bfunc1 /(m**2*P**2* rho), Bdash1 /(m**2*P**2* rho),

49



I, 0, -1]

65 def vectorf(w, s): # Convert fourth -order differential

equation into four first -order ODEs.

66 x1, x2, x3, x4 = w

67 f = [x2, x3, x4, (x1-coefs [2]*x3-coefs [1]*x4)/coefs

[0]]

68 return f

69

70 sol1m = odeint(vectorf , gamvec , s)

71 # Solved using odeint.

72 sol2m = odeint(vectorf , delvec , s)

73 x1 = sol1m [:,0] # b1m

74 x3 = sol1m [:,2] # d2b1m/ds2

75 y1 = sol2m [:,0] # b2m

76 y3 = sol2m [:,2] # d2b2m/ds2

77

78 a1m = (-1/m**2*P**2* rho)*np.array(x3)

79 a2m = (-1/m**2*P**2* rho)*np.array(y3)

80 theta = a1m*np.cos(m*P*t)+a2m*np.sin(m*P*t)

81 # Introduction of t depedence.

82 integrand = [np.cos(theta), np.sin(theta), 0]

83 cosint.append(integrate.simps(integrand [0],s))

84 # Numerical integration using Simpson ’s rule.

85 sinint.append(integrate.simps(integrand [1],s))

86

87 x, y = np.array(cosint), np.array(sinint)

88

89 # Visual representation of a varied thickness.

90

91 lwidths = []

92 for p in np.linspace(0,L,len(x)):

93 lwidths.append (50*R(p))

94 fig , axes = plt.subplots ()

95

96 axes.scatter(x+r0[0],y+r0[1], s=lwidths , alpha =0.05)

97 axes.plot(x+r0[0],y+r0[1],"#4 e596e",linewidth =1)

98 axes.set_xlim (-1+r0[0], L+0.5+r0[0])

99 axes.set_ylim (-0.5+r0[1]-L, L+0.5+r0[1])

100

101 plt.suptitle(’t = %.2f’ % np.round(t,2), x=0.24 , y=0.81 , size

=17, color=’#bfbfbf ’)

102 # plt.show()

103 fig.savefig (("{1}/ oscplot_ {0}. png").format(int(co),file))
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104 plt.rcParams.update ({’figure.max_open_warning ’: 0})

105

106 # Test cases.

107

108 x = [600, 2.1, [3,5], 5, 1, 1.5, lambda x:3*(np.sin(9*x)+1.3) , lambda

x:(np.pi*1.2e4/4) *(3*(np.sin(9*x)+1.3))**4, 5, [1,1,1,1],

[1,1,1,1], lambda x:(np.pi*1.2e2/4) *(2916* np.cos (9*x)*(np.sin (9*x

)+1.3) **3)]

109

110 file = str(datetime.datetime.now().replace(microsecond =0)).replace("

","-").replace(":",".")

111 os.makedirs(file)

112 imgsoln (*x)

113

114 image_files = [file+’/’+img for img in os.listdir(file) if img.

endswith(".png")]

115 clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(

image_files , fps =13)

116 clip.write_gif(’{0}. gif’.format(file))

A.2 Python Code Snippet for solve bvp

1 def vectorf(s, w): # Convert fourth -order differential equation into

four first -order ODEs.

2 f = np.vstack ((w[1], w[2], w[3], (w[0]- coefs [2]*w[2]- coefs [1]*w

[3])/coefs [0]))

3 return f

4 def bc(ya , yb):

5 return np.array ([ya[0]-0.5, yb[0]-0.5, ya[1], yb [1]+2])

6 y_a = np.ones((4, s.size))

7 y_b = np.ones((4, s.size))

8

9 sol1m = solve_bvp(vectorf , bc, s, y_a) # Solved using solve_bvp.

10 sol2m = solve_bvp(vectorf , bc, s, y_b)
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